If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-16t^2+20t+19
We move all terms to the left:
0-(-16t^2+20t+19)=0
We add all the numbers together, and all the variables
-(-16t^2+20t+19)=0
We get rid of parentheses
16t^2-20t-19=0
a = 16; b = -20; c = -19;
Δ = b2-4ac
Δ = -202-4·16·(-19)
Δ = 1616
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1616}=\sqrt{16*101}=\sqrt{16}*\sqrt{101}=4\sqrt{101}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-4\sqrt{101}}{2*16}=\frac{20-4\sqrt{101}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+4\sqrt{101}}{2*16}=\frac{20+4\sqrt{101}}{32} $
| 22=-7×n | | 3g+5=27 | | 0=3(n+4)-6 | | 36=8(2x-2)+40-4x | | -2=-2(z+17) | | 3x/2+2x/5=95 | | 4n^2+8n-12=0 | | 7-r=6 | | (x^2+8)/(x)+1=4(x+2)/x | | 25=-5(-y-2)+9-2y | | (1/x+3)+(1/x+2)=1 | | 2(x+6)=7(x-4)+10 | | 4*x-(-3*x+2)-(7*x-2)=0 | | -64x+-6=-6x-22 | | 3y+2y-3(y-4)=32 | | 9=3(h-6) | | Y=$0.15x+$2.96 | | 4(6x-2)=-4x-6 | | 2x*x+18=36 | | 10(g+90)=90 | | Y=9x+1/2 | | 302=4x^2-32x-210 | | 10+8a-(a+9)=50 | | -2x/3+5=15 | | 62^x-5=238,323 | | 14+2g=32 | | 13x-14=38 | | -8v+15=-4v-70 | | z/10-35=-33 | | 5(s+25)=45 | | 8(g-91)=-8 | | 716=x4 |